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Abstract 

Green’s functions are derived fa the plane dsetoetatica problem of a dislocation 
in a bimerterial strip. Using theae: fundamental eaiutione M kemeia, varioua problane 
involving c r d a  in a bimaterid strip are analyzed using singular integrd equations. For 
eachproblemamsidaed, etrese int;meityfactars amcalcnlated5cn eevdcombinationa 
of the patametan, which describe loading, ppxwtry aadnlatezial m i d  

1 Introduction 

The mechanical behavior of bimaterird interfaces in composite materials is currently a topic 

of considerable interest to the applied mechanics community. Many analytical, numerical 

and experimental inveatigationrr have been conducted recently to gain a better d & d -  

ing of how these interfacts &ect bulk compoeite propertice such as strength, s t i h s s  and 

toughness. The mechanisms of cracking or debonding dong bimatchl interhces arc of 

parthlar interest in brittle composites since it haa been established experimezltdly and 

through minomechanical mod& thrrt certain desircd properties can only be schieved in 

such materiab if the cracks which inifiate in the matrix arc deflected by the fibas dong the 

fiber-matrix interface [l]. It is clurr that micromechanical d ~ )  wi l l  continue to play an 

important role in analyzing and designing brittle composites to ensure thb desired 
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seqaenct. Moreover, upeximental programs arc necessary to measure the fiacturt tough- 

ness of the fiber-matrix intuface because the conditione required for the d d  behavior 

involve the relative toughness between the fiber and the interface. 

Micromechasical mod& which involve relatively aimple geometrim such 88 cmcb in 

a t e  and s e m i - s i t e  plane bo&- ~ S V C  been handled acing distributed d i e l ~ ~ l r t i ~ m  and 

singular integral quatione [2]. For complicated h i t e  geometries, on the other hand, the 

bite element method haa gained popularity [3,4]. The eingalar integral equation method 

hae two advantages. First, it leads to accurate rewlts for etrees intensity fsctom. Second, 

once the Green’s functions arc derived and the quatiom 

be performed by simply varying the dimcnsiodcse parameten, which describe the loading, 

crack length and geometry. Unfortunately, if the geometry of the problem ia complicated, 

the method is not feasible became it ie very difEdt to derive the kernels. The real advantage 

of the h i t e  element method ia ita ability to model complicated geometries. If proper care 

is taken, the method dso produces accurate results. Pammetu studies, on the other hand, 

are time consuming and relatively CILmbersome. 

eet ap, panrmetu s t n b  

Thia paper addmwca a class of problems which involve cracks in bonded Stripe. The 

motivation of thia work uune from a desire to develop a computer program which could 

be used to d d t e  stress intensity factors and energy nleaee rates for bimaterid fracture 

specimens being developed st C.W.ItU., and model the geometry of the eo-ded  Santa 

Barbara mixed-mode epedmcn shown in Figure la. The latter “T-crack” codiguration was 

developed by Chamlambides et aL [3,4] at the Univexsity of Wornia at Santa Barbara to 

measure the fracture resistance of bimaterial interhcm. To interpret experimental rcaulte 

and to guide the dcsign of the spedmen, they developed a finite clement approach to char- 

t& trends in st- intemity factors, energy releaee rates and center paint diaplaccmests 

with specimen dimemiom, clastic propertics and crack length, Ae dtscasaed in [3,4], the 

strees intensity factors and energy release rate for the crack growing along the interface 

exhibit steady Btate behavior a8 a d t  of the constant moment within the inner load- 

ing points. The shortat crack for 

all = 0.0938 (or c/Az = 0.3127). 
which d t a  aim calculated in [3,4] is approximately 

The malts showed that this crack length ia already 
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at steady state. One of the questitma left unanswered ie: haw long does the crack have 

to grow along the interface before it reaches steady state? To answer this question the 

problem is modeled in this paper using the singular integral equation technique. R~~dts 

will be presented for relatively shoit crack lengths as d ad for the case a = 0, e hz 

(Fig.lc, Fig.ld, F'ig.1~). It should bc noted that at the end of this work the authors learned 

that Charalambides hae recently obtained results for both the transient region and for the 

three-point loading configuration. 

In the next section Green's functions are derived for edge dislocations in is bimatezial 

drip. These fundamental solutions can be d in tarn to sct up the integral eqaatiOne 

for all the configurations shown in F S p  1. It should be noted that this class of problems 

has been analyzed by Ln [5] and Lu and Erdogan [e] using Fourier traneforms. In [5,6] 

the problems were reduced to singdar integral equations without the use of dislocationa as 

fundamental solutions. Dislocation densities, however, w a e  dehed eventually to set up the 

integral eqnations. In this paper the: dislocations arc introduced as fnndamentd solutions. 

This will enable ne, in the htm, to solve problems which involve non-eymmetric loading 

and/or inclined cracks. In the third section the dislocation solutione arc used to set up 

the integral quatiom for several configurations and loadingu. The l ad  section presents 

numerical d t a  and comparieone with udsting ~~lu t ions .  

2 Fundamental Solutions and Loading Conditions 

Assume that two dissimilar elastic stripe are bonded along the 2 axis. The upper layer 

(3 > 0) ia labeled by "1" and the lower layer (g  < 0) is labeled by 9". The Green's fanctions 
for an edge dielocation in the b ima tcd  strip are derived by superposing the solutione for 

(1) a dislocation neat the i n t h e  of two bonded half-plaaes; and (2) a bimaterial strip 

loaded with boundary t h o r n  which cancel out t h e  induced by problem (1). 

The 80Iuticw to problem (1) is well known. The stmasea and displacements, which will 

be denoted by wperscript '(l)", can be w c p r e a s e d  conveniently in terms of Mwkhelishvili'a 
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complex potentiah M 

in which the m M p t  i (i = 1,2) denotes "in region in; Qp1 and 8 1  cormpond to the 

potentials for the upper half p h e  and @z and 9 2  correspond to the potentials for the lower 

half plane. Moreover, z is the complex variable x + iy, the prime denotes differentiation 

with respect to x ,  au overbar denotee conjugation, p is the shear modulus, and IC is d&ed 

in twms of Poiwon's ratio Y as R = 3 - 4u for piane Strain, and R = (3 - v) / ( l  + Y )  for 

plane stress. The complex potentiah for a dislocation located at = zo + igo azc given by 

171 

with 
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In (3) the Dundm conatants Q and. @ are defined by 

and 

w h m  b = b, + ib, with b, and b, bcing the z and 0 components of the Burgers vector. 

We next compute the gtresees due tco a dislocation b1 = + ibl ,  at the interface (zo + 0) 

and due to a dielocation locsted at x = 0, y = C < 0. The Grat &location 

corrtsponda to the Grten’e fandioni for the interface crack, while the second correspondis 

to the fnndamtntd solution for the vtrtical crack For 

= 

+ 0, the stresses become 

for 9 = 0, 
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I for y > 0, and 

with 

for y 2 0, 
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for y 0, where 

with 

when rz = 9 +e snd when y < 0 
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The solution to problem (2) is obtained by wing Fourier txansformation techniqaea. 

Without loa of generality, coneider a binaterid drip Ioaded with surface tractionr, which 

 ill^ symmetric about the y-&. The hnricr transform of dieplacrmurt ia ZM follows: 

The general solutions for Cri and K are [9]: 

with the unknown cafiieimts detamincd by continuiw id boaadsry ~onditiona along the 

I interhce: 
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where the first four equationa represent the continuity of u, u, rOr and uIll along the 

interface, respdvdfi  the four equations ~ p e c i f y  the boundary conditions 8t y = h1 

and y = 4 2 .  The functions !I([) and ti(<) are nlated to the Fourier transforma of the 

loadinge on the top Blllfact of the upper strip, while fs(() and f&) are related to the 

Fourier transfoxms of the loadings on the bottom surhcc ofthe lower strip. To eliminate 

the unwanted anrface traction along the boundaries due to each dislocation, for example b,, 

in P m b l a  (11, fanctionfl fl(€), fz(€), fs(€> a d  f4(€) are =t to be 

It can be shown that equations (19) am alno applicable to the anti-symmctric problem. The 

fi({)’e ~ W C  b a n  d~&4 for each case and are given in the A p p ~ ~ d k  

Afta the Aij’8 are e~lved, the stress ~ o m p o n e ~ t s  due to problem (2) ,  which are denoted 

by wpuuuipta “(Z)”, are readily obtained by inverse Fonrier transformation. For the 
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Symmetric problem, e. g. for dislocation b,, 

when 3y < 0. For the anti-symmetric problem, e. g. for dielocation b,, the above &onehip 

is stin valid if8intz is replaced by cos& and Cos~zis npbced by -sin@ 

convcmha, in wbeeqamt &&ns introduce the hllowing definitiom for the 

stresses produced by problem (2): 
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We wieh to point out that the fnndamental roolntiona derived above can be used to solve 

a large c l a ~  of problems. The prrrpoee of thia paper is to present the methodology. Thus 

we wiU c o d e r  only three topes of loadings. Thtsc include three and four point bending 

(%.la), constant presenre dong the crack &ea, and a temperature change of the com- 

p e t e  atrip (Fig-ld). Conaider first a perfectly bonded himaterial beam subjected to four- 

point bending. The stresses in the strip due to this loading condition caa be calculated using 

composite beam theory if the strip is long enough. However, since we may be interested, in 

the future, in analpaing relatively short beame, an eMcity solution is obtained in the mme 

manner ~ E I  for problem (2) of the dislocation solution. The applied loada are represented 

by Dirac delta functione at the load points. That is cgl(z, hl)  = -p[S(z - d )  + 6(2 + d)] /2  

and uw(z, 4 2 )  = -p[6(z - e) + S(z + e)]/2. The functions f1, f2, f3 and f4 for thie 

case are listed in the Appendix To evaluate the drama which arise h m  this loading, it 

may Beem natural to proceed in the same exact manner aa for the dielocation solutiom. 

However, tremendous care muat be taken when evaluating the strema dong the interface 

and along the line z = 0 due to this loading condition, became the integrals in the inverse 

transformations converge very slowly. To improve the convergence the integrands are first 

evaluated at = 00. The dominant portion of these limits, which correspond to half-space 

adutiona, are wbtraded fiom and added to the integrands, and the added integrsla are 

evaluated in c l o d  form. The came procednn is also applied to the didocation when it 

ia close to the bottom surface. For brevity the details of the procedure are not given here, 

but can be recovwed in dmilnt analyses presented in [10,11]. 

Denote the stnssts produced by the four point bending M 

respectidy, when p is the fonx per unit thickness. Them wil l  be used in d o n  3 to set 
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up the integral equatiom. 

The next loading condition CO&B of a d o r m  change of temperatme A!l' of the 

composite strip. The t h 4  atxearw in the strip arc d t x h c d  wing beam theory [12]. 

In pasficalar, the strcssinlay~ 2 d00g theline z = 0 is givtn in t w  of the thennd 

expansion coefficiente q and a2 by 

with 

E @=-. 
1 - 9 

3 Integral Equations 

several problem Consgtuatione arc d.epicted in Figare 1. The coordinate system is chosen 

such that the z sxie liea dong the interface of the bimaterial etrip, and the g dong the 

vertical crack 80 that layer 1 is at y :> 0 and layer 2 ia a& g < 0. The integral equations for 

the four point bending problem ehmn in Fig.la arc sct up first. The str#lees along the lines 

y = 0 snd 2 = 0 (3 I; 0) are given by the snmmatao . n of contributions &om problem (l), 

problem (2) and the four point bend :load (24). Replacing the dialocationa by a didxibution 

of dislocations enablca us to aatiefy the traction boundmy conditione along the d Thia 

procedure leade to the following set of couplltd sirpgular integral equations: 
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1 + a  h,(t -- 1)) a(t) = -7rR(-- . 
1-P 2 

If the vertical crack is not prtsent, & is E& c q d  zero and only the first equation of (26) 

ia enforced. If the intcxha crack is not ptesent, on the other hand, the first of equations (26) 

is not enforced and & is act qd to zero in the second ~ ~ t i 0 1 1 .  For the edge crack nhc#w: 

length c < hz, the dislocation density is instesd represented aa &(t) = &(c(t - 1)/2), 
and in the upreseion of the kernel 1Y.r given by (28) li2 needs to be replaced by c. Other 

loading conditions can be treated by modifying fnnction~ pt and p3. 

The integral equations can be solved namericsny by representing each dielodon density 

in terms of a regular fanction and a cEwacteristic function with the proper singalarities at 

the end pointa. Thus, let 

when gl(t) and h(t) are regular continuous fanctione which arc approximated a p;eewii# 

quadratic [13], and 

The exponent X is taken a~ 0.5 for the ‘T-CsaEL (Figla) and for an edge crack wh- tip does 

not touch the interface (Fig.lc, Figld). If the tip of the Oage crack touches the intafba, 

X ia determined by the following characteristic equation [14,15]: 
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Using the method developed by Miller and K e u  [13], integral equatione (26) can be reduced 

to a set of algebraic equations. 

The additional conditione to be ~atigficd are aa follows. For the T-crack 

Quation (32) is the clogan condition for the horbonta crack, (33) repneenb the condition 

that the etnse singnllvities at the tip of the vertical notch are lese than squan root, and (34) 

implies the blnntnese at 2 = 0. Ae wi l l  be diecoaeed in the next d o n ,  the represeatation 

of the dialocation dcnrrity for the T-crack is not rigorous. However, the error introduced is 

acceptable for the dgnra t ions  considered in this paper. 

For a single interface crack 

and for a single edge aack 

h(4) = 0 
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4 Numerical Results and Stress Intensity Factor Analysis 

The stnse intensity fktor K of t h t c  interface crack (Fig.lb) and the T d  &.la) are 

defined by [16] 

It ~ k n  be shown that in tenns of $iI(t), which is determined by equation (26) with (28) and 

(B), this complex strtsa intensity fibctor can be e x p d  

(39) 

for the four paint bending load. h i :  an edge crack whoee tip does not touch the interface 

for the four point bending. For (UL edge  crack whoee tip touches the intaface 
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I and 

(43) 

For the other loading carws, the factor p / h  in (39) (41) aad (43) is replaced correspondingly. 

The energy nleaee rate of the interface  crack^ in the considered plane drain problems is 

given by [17] 

In order to check the lengthy algebra and the nnmexid scheme, two codgarations 

which have prcviody been analymcd are considered first: a p d  crackbetween 

two bonded dissimilar layers and a p d e d  vertical edge crack in the bottom hycr 

of a composite beam. Fig.2 ahom the dimenaionler#, stress in tens it^ fslctors K/uofi = 

lk,-[(u - ~ > ' - 7 ( a  + z)7(um + iusv)] /u~u vef911110.1 < h& 5 4 for the interface crack 

with hz/R1 = 3, y = y = 0.3, p1/p2 = 3 and pl/p2 = 10, respectively. The results are 

plotted in terrrm of this de6nition of stress intensity fador for comparison with nference 

[18]. For h l / k  > 0.5 the d t a  agree with those presented in [la] (no results were given 

there for h1/2a < 0.5). Ae expected, when the crack becomes shorter, the strars i n t d t y  

factor convugca to 1 + 2ir which is the solution for an intcrhce crack between two bonded 

half-spaces. 

I 

I 

For the edge crack problem a homogeneous beam and four ceramic aunpordte strips arc 

c~neidertd They ~ve: drip 1 Ti/Alzos ~ t h  4 = 0.322, y = 0.207 d p z / p l  = 4.129, 

strip 2 Ni/MgO with y = 0.314, g = 0.175 a d  p2/p1= 1.588, Strip 3 MgOW1 and Strip 4 

AbOs/Ti [16]. Wg.3 and Fig.4 show the dimensionlees Btrese intensity factore as fanctione 

of crack length and relative thickneaa of the layem for the four point bmding ease c o n s i d d  

in [3,4] when d = 5h2, e = 8ih and I = 3ihz. The qaantitg a,, is the iudal stress at the 
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lower oarface of the composite beam calculated wing compoeite beam theory. It is given by 

with 

1 
12 2 ’  12 2 

I2 = -g 1 + h2(& - - h2 12 . I1 = -h: + hl(& - - 

(46) 

where M is the bending moment; for the four point bending shown in Fig.1 M = p1/2. It is 

observed that as the crack tip a p p n d a  the interface, the stm intensity factor increases 

drdcally if the edge crack is in the sMer layer. In the limit, the strese intensity fador 

approaches infinity for this case, since it can be shown that as the crack tip hits the interface 

the strese singularity is greater than aqnan root. Whm the crack is in the softer layer, the 

stnse intemity factor go- to  zero as the tip approaches the interface, eince the eingnlarits 

in this case ia leas than square root. When the crack is very short, namely c/hz + 0, the 

dimensionless stnse intensity factor approaches 1.586, which corresponds to the solution 

of an edge crack in a half-space under d o r m  tension. When the thickntes of the upper 

layer becomes vuy thin, the Btrees intensity hctors for the b t e r i a l  strips approach thost 

for a homogeneous buun. It is intmading to note that for these valnea of mismatch, the 

dimensionless stress inte.nsiQ fa,ctons arc insensitive to c/hz for c/h2 < 0.5 and insensitive to 

hl/h2 for hl/ha > 1. Rewlta were a h  obtained for three point bending. For thia geometry 

the nondimensiod results were found to be dmost exactly the same 88 for the four point 

bending. 

Fig.5 shows the stress intensity factors for the edge crack whose tip touches the interface. 

In this caae the singularity depends on the elastic mismatch of the two layera and fador X 
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is calculated from (31). For the combination considexed hen y = y = 0.3, h l p l =  3 and 

/ r ~ / p l  = 1/3, and Bingnlarifies X = 0.6205 and X = 0.4005, nepectively. Notice that, since 

the strarre singularities are Merent, it is mcsninglcua to directly compare the valuca of the 

dimensionlaw strees intensity factore given in Fig.4 and Fig.5. It ehould be noted that t h e  

results do not compare at all with those in [5,6]. 

Sappoec that a bimsterial beam is sabjected to a concentrated force p dong its neutral 

axis  at^ shown in Fig.lf where HI and H2 axe given by (46). The longitudid strcsa across 

the lowa hycr ia 

where C = pl(1- @)/[lr2(1- e)]. If the beam is subjected to the remote bending, based 
on the compoeite beasn theory, the s t m  on the lowu layer is 

where umu and Hz are given in (45) and (46). Notice that two D d n r a  patamdm a and 

B ca,n ~JVCI the elastic moduli dependence of a twdimensioaal bimateria system [19]. In 
lbble 1 and lsb le  2 the streseintcnsityfactors arc given in terme of a and B for an edge 

crmk with c/hz = 0.5 mdtr the &OVC two loading systeme. Table 3 shorn the Singalruity A 

of the edge crack whoat tip touches the interface. The correeponding stnse intuwity fiLctora 

am given for this class of edge craclm. 

Fig.6 and Fig.? show the strese intensib factore of the edge cracks for the thermai losding 

case. The sign of the Btreae intensity factor changes when the crack length ia approximately 

equal to O.6h2 M a m d t  of bending. If additional loads axe wperimposed, these results 

wggerst that crack growth caa eithu be accelerated when (a2 - a1)AT < 0 or slowed down 

when ( 0 2  - -)AT > 0 by the introduction of a temperstare change. 
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The last u a m p l e  considas the 'T-cracL, which is r&rd to aa the Santa Barbara q~eci- 

men, shown in Figart la when d = 5hz, e = 0ih.2 and 1 = 3fh.2. Results were calculated for 

crack lengths which are ehortcr than thoee preeeplted in [3,4]. Fignn 8-14 show the dimen- 

sionleee Btnse intenti@ factum KhLkhspfpl , energy release rates G and the phase angles, 

defined (LB the w e n t  of KAK, f a  strips with y = e = 0.3 md pl/pz = 1, p ~ / h  = 2.5, 

p 1 / ~  = 5, pl/m = 10, nspectively. The nsnlts obtained in [3,4] for a / b  > 0.5 am 

superposed on the iigurcs. The agreement ie obeerved to be quite good. It i obmzvcd that 

steady state begins at aack lengths equal to hg. ELeenlts for a/hz lese than 0.1 were not 

calcplated because we believe that accurate mlutione cannot be obtained for these cases 

using the pnsent formulation, since the integral equatione are coupled. To obtain actmate 

results for d d u e  of u/Az one would need to formalate the problem in term of a thgle 

integral equation whoee kernel inchder, an analytic solution for the interaction of the two 

cracks. 

It should be mentioned that for crack lengths greater than 1.5Az convergent results were 

not obtained a~ a d t  of using a dietribution of &~OC&~ORS density which is continnone 

at z = 0, y = 0. Because the vertical crack intersects the interface crack, the slope of 

the horizontal crack is diecontinuom at (0,O). The numerical scheme implicitly assumes 

that the dope there is m. We believe it is this error which lesde to poor rasulta for long 

crack length, for which the elope at (0,O) is desaitely not aero. This problem is being 

addressed by the authors at the pn-t time by introducing a dieeontinnow distribution of 

ddOC&OM. 

5 Conclusions 

An analytical formulation has bean praeented which can be used to mlve a dase of plane 

elaetoetatic problems involving cracked bimateria beamrr. M t a  were calculakd only for a 

few geometric c o d p a t i o n e  and qmmetric loadinge. However, since the d y s i s  relics on 

fundamental ~olutiona for d ie10~at i0~  in bonded strips, other codgumtions mch (YI inclined 

or curved cracb and/or non-symmdric loadings can be treated with minor modifications. 
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For the T-craEL, when the intcrhcc crack t relatively ehort, the rcsdte obtained wing the 

singular integral equation approach compare very d with those obtained in [3,4] using 

the finite element method. However, for such configarations, which involve diecontinuoua 

didocation dmsities at the intersection of the two CraEllS, poor results wcre obtained for 

nlatively long interface crach. Thia problem can be tnsttd by m o a  the numerid 

scheme to h a d e  discontinuone didocation densities. 
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Appendix 

For dislocation b, lying at interface (O,,O) 

For dislocation bv lying at interface (0,O) 

f4(€) = -%3 + (1 - P>h2€1e -h€* * 
For dislocation b, lying at (0,c) with C < 0 



I 
I 

f i r  four-point bending 
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Table 1 Strum intensity fsdora for edge crack under tension along neutral aJds (c/hz = 

2.137 
2.149 
2157 
2.158 

1.910 
1.920 
1.924 
1.924 

0 

B - 
-0.4 
-0.3 
-0.2 
-0.1 
0.0 
0.1 
0.2 
0.3 
0.4 - 

-0.2 I 0.0 I 0.2 1- hllh, 

0.1 

-0.4 

3.681 
3.685 
3.688 
3.692 
3.6s 

-. 

-0.8 -0.6 
3.891 3.786 
3.892 3.788 
3.893 3.791 
3.894 3.793 
3.895 3.796 

3.571 
3.576 3.463 3.345 
3.581 3.469 3353 
3.586 3.474 3.380 
3.589 3.480 3.366 

3.485 3.373 

3.231 3.102 
3.240 3.112 
3.248 3.122 
3.255 3.131 
3.262 3.139 

2.979 
2.991 
3.001 
3.011 1 

U n 0 

0.0 - 

2.066 
2.094 
2.117 
2.138 
2156 

B -0.8 - 
2.782 
2.828 
2.886 
2900 
2.929 

-0.4 
-0.3 
-0.2 
-0.1 
0.0 
0.1 
0.2 
0.3 
0.4 - 

1.964 
1.989 1.886 
2010 1.903 
2.027 1.917 
2.041 1.927 

1.933 

1.773 
~ 1.786 
1.794 
1.800 
1.801 II 

B 
-0.4 
-0.3 
-0.2 
-0.1 
0.0 
0.1 
0.2 
0.3 
0.4 

- 
- 

0.4 - 

1.498 
1.493 
1.485 
1.472 
1.634 

- 

0.2 - 

1.549 
1.549 
1.545 
1.537 
1.525 

- 

h/h, 

10 

-0.4 -. 

1.774 
1.783 
1.786 
1.784 
1.778 

T 1.678 
1.686 
1.687 
1.684 
1.677 

1.610 
1.611 
1.808 
1.600 
1.588 



Table 2 Stress intensity taCtora for edge crack under pure bending ( c / a  = 0.5). 

h l l h  

0.1 

B 
-0.4 
-0.3 
-0.2 
-0.1 
0.0 
0.1 
0.2 
0.3 
0.4 

0.4 

1.910 
1.916 
1.921 
1.928 
1.931 

0.6 

1.924 
1.931 
1.938 
1.944 
1.950 

@ 
-0.4 
-0.3 
-0.2 
-0.1 
0.0 

-0.8 -0.6 -0.4 -0.2 
1.594 1.509 
1.625 1.543 1.510 1.437 
1.662 1.572 1.539 1.514 
1.675 1.597 1.564 1.538 
1.695 1.619 1.585 1.559 

0.6 

1.373 
1.383 
1.391 
1.m 
1.397 

0.8 

1.283 
1.285 
1.2% 
1.278 
1.269 

a 
0.0 
- 

0.2 0.8 - 

1.982 
1.992 
1.999 
2.008 
2.015 - 

-0.6 1 -0.4 I -0.2 -0.8 
2.074 
2.074 
2.075 
2076 
2.031 

1 

2.032 
2.034 
2.038 
2.037 
2.038 

1.996 
1.998 
2.000 
2.002 
2.004 

1.960 
1.964 
1.967 
1.969 
1.972 

1.934 
1.938 
1.942 
1.945 
1.949 

1.913 

1.922 
1.927 
1.931 

1.918 

K/V,,J;r';c72 
I I a 

h, /h 

1 

1.488 
1.511 
1.530 
1.547 
1.561 

1.457 
1.477 
1.495 
1.509 
1.521 

1.434 
1.448 
1.460 
1.468 
1.474 

- - 
B - 
-0.4 
-0.3 
-0.2 
-0.1 
0.0 
0.1 
0 2  
0.3 
0.4 - 

Q - 
0.0 - 

1.521 
1.522 
1.519 
1.512 
1.500 

- 

- 
0.8 

I_ 

1.334 
1326 
1513 
1.296 
1.273 - 

- 
0.6 - 

1.375 
1.371 
1.363 
1.360 
1.333 

~~ 

-0.8 
1.W 
1.963 
1.975 
1.982 
1.984 

- 

- 

~ 

-0.4 

1.669 
1.677 
1.680 
1.679 
1.673 

0.2 - 

1.464 
1.485 
1.M 
1.454 
1.441 

- 

0.4 - 

1.417 
1.413 
1.405 
1.392 
1.376 

-0.2 

1.583 
1.590 
1.592 
1.589 
1.582 

- 

28 

-0.6 
1.771 
1.786 
1.796 
1.800 
1.800 

- 



, 

B 
-0.4 
-0.3 
-0.2 
-0.1 
0.0 
0.1 

- _ _  
S b l c  3 Singalarits for edge crack whose tip touches the intafact. 

-0.8 -0.6 
0.7321 0.6449 
0.7394 0.6507 
0.7438 0.6633 
0.7456 0.6529 
0.7450 0.6495 

0.4682 
0.4496 
0.4249 
0.3913 
0.3436 1 

0.4 

0.9623 
0.4318 
0.4049 
0.3687 
0.3173 

~~ 

-0.4 

0.5949 
0.5946 
0.5912 
0.5843 
0.5734 

-0.2 

046687 
0.15533 
O . , M  
0-5384 
O.li213 

-- 0.0 

0.5230 
0.5136 
0.5oOo 
0.4812 
0.6561 

0.2 I 0.4 I 0.6 

0.5000 
0.4881 
0.4718 
0.4498 
0.41w) 

1 1 

0.8 

0.4173 
0.3887 
0.3604 

0.2l14 
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Table 4 Stress intenuity ktors  for edge crack whoee tip tonchea the intex#~~ (tennion 

dong neutral sxh). 

42.29 
36.34 
31.86 
28.41 
25.70 

64.73 
57.24 
51.88 
48.00 
46.28 

h l l h  

10 

B 
-0.4 
-0.3 
-0.2 
-0.1 
0.0 
0.1 
0.2 
0.3 
0.4 

B 
- 

0.6 
- 

0.8 0.2 1 0.4 -0.4 

66.37 
59.99 
56.27 
53.86 
52.70 

-0.4 
-0.3 
-0.2 
-0.1 
0.0 
0.1 
0.2 
0.9 
0.4 - 

66.57 
61.77 
58.63 
56.87 
56.49 

59-28 
56.83 
56.76 
58-14 
58.45 

36.58 
36.59 
56.57 
39.02 
44.28 

- 

z3.n 
24.27 
25.72 
285 
36.76 I I 

a 
B I -0.8 I -0.6 I -0.4 I -0.2 

- 
0.0 

1.963 

hl /h - 

1 

-0.4 
-0.3 
-0.2 
-0.1 
0.0 
0.1 
0.2 
0.3 
0.4 

6.209 
5.631 
5.182 
4.820 
4.523 

6.483 
5.901 
5.442 
5.074 
4.775 

5.625 
5.238 
4.927 
4.679 
4.488 

5.120 
4.819 
4.579 
4.393 
4.262 

4.m 
4.123 
3.993 
3.914 
3.m 

3.741 
3.619 
3.526 
3.486 
3.512 

2.524 
2 . m  
2.484 
2532 
2681 

3.078 
3.m 
3.004 
3.049 
3.210 

a 
0.0 
- - 

-0.6 
- 
0.2 

~ 

-0.8 0.4 0.6 -0.2 -0.4 
2.361 
2.189 
2063 
1.M 
1.890 

2.466 
2286 
2.149 
2042 
1.958 

2.064 
1.962 
1.889 
1.825 
1.790 

1.931 
1.851 
1.791 
1.750 
1.732 

1.738 
1.893 
1.668 
1.662 
1.689 

1.829 
1.5% 
1.577 
1.582 
1.621 

1.5m 
1.489 
1.W 
1.W 
1.649 

1.413 
1.405 
1.416 
1.458 
l.!j83 
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~~ 

Table 5 Stnse intensi@ factore for edge crack whose tip touches the interface (pure 

w 

bending). 

I -0.2 0.0 0.2 0.4 

1.734 
1.m 1.561 1.668 
1.596 1.516 1.431 1360 
1.554 1.485 1.409 1334 
1.531 1.474 1.408 1.336 

1.489 1.432 134 
1.447 

0.6 0.8 

1.274 
1.260 1.191 
1.289 1.M 
1.292 l.m 
1.372 1.203 

1.497 

- - 
B - 
-0.4 
4.3 
-0.2 
-0.1 
0.0 
0.1 
0.2 
0.3 
0.4 

a 
-0.8 
12.59 
1o.n 
9.280 
8.166 
7.279 

- -0.4 -- 
21.27 
19.47 
18.20 
17.36 
16.93 

0.0 - 

21.w 
2033 
19.90 
19.98 
20.73 

- 

0 3  - 

20.56 
19.85 
19.61 
19.90 
20.94 

0.4 - 

18.56 
18.46 
18.87 
m.02 
a56 

- 

0.8 - 

12.51 
12.77 
13.50 
15.10 
19.11 - 

hllh 

0.1 

0.6 

16.35 
16.33 
16.74 
17.81 
20.14 

-0.2 

22.67 
20.99 
19.87 
19.22 
19.03 

-0.6 
20.29 
17.87 
16.13 
14.88 
13.94 

a 
-0.6 

2.478 
2.215 
2.004 
1.850 
1.683 

- 

- 

-0.4 I -0.2 1 0.0 0.8 

1.188 
1.160 
1.148 
1.168 
1.266 

-0.3 
-0.2 
4.1 
0.0 
0.1 

1338 
1.379 
1.247 
1.134 

2.536 
2.324 
2.147 
1.99!3 
1.874 

2.606 
2.417 
2.260 
2.130 
2.024 

2.353 
2.223 
2.116 
2.059 

2.182 
2.077 
1.994 
1.932 
1.900 

1.855 
1.790 
1.746 
1.727 
1.758 

1.572 
1.522 
1.487 
1.475 
1.505 

1 

I 0.4 I 

- 
-0.8 -0.6 -0.4 -- 

-0.4 2 . W  2.077 
-0.3 1.937 1.927 1.84:L 
-0.2 1.815 1.810 1.74L 
-0.1 1.719 1.718 1.668 
0.0 1.695 1.647 1.61:L 
ai 1.573 
0.2 
0.3 
0.4 - 

10 

31 



f 2e ' f  

2a 

AT 

\ 

neutral axis 
I I 

Fig. 1 Crack conf igar&iO~ for the bimaterial drip. 
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